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1 Introduction

The Fast Fourier Transform (FFT) plays a central role in scientific computing. For
example, it is used in image processing, digital signal processing, and the
numerical solution of differential equations using spectral and pseudo-spectral
methods. Many vendors, such as IBM and NAG, have implemented FFTs in their
proprietary libraries. However, these implementations are far from complete.
IBM's Parallel Engineering and Scientific Subroutine Library is written for the
Power RS6000 chips. It does not allow every sequence length to be transformed,
and the sequence lengths that may be transformed must be divisible evenly by
the number of processors used to perform the transformation [1]. But the NAG
FFTs have many more allowable lengths [2]. However, these FFTs are
implemented for sequential and vector computers, not for distributed memory
computers. This project ports the NAG 2-d and 3-d FFTs, CO6FUF and CO6FXF,
respectively, to the IBM SP-1, to transform 2-d and 3-d arrays of almost any
dimension's upon arbitrarily many processors. Section 2 presents the
parallelization strategies used, section 3 reports performance, section 4 presents
a discussion of the performance, and section 5 is a summary and conclusion.

2 Parallelization

The NAG routines are implementations of the self-sorting Stockham algorithm
applied to multiple transforms of mixed-radix lengths [2],[3]. The various radices
used are 2, 3, 4, 5, 6, and odd numbers not divisible by 2, 3, 4, 5, or 6. The FFT
transformation occurs along the last dimension of the data in storage, so that the
arrays are transformed one dimension at a time, then transposed and so on until

the entire array has been transformed. Use has been made of a branching

statement in each radix subroutine which minimizes the number of short do-loops
executed in the course of the computation, at the cost of increased striding
through the data.

The FFT algorithm necessitates that the data along the dimension to be
transformed be located all on one processor at the time of transformation. We
require a reasonably good balance of work as well, so that the arrays must be

distributed as evenly as possible. However, in general, the array dimensions won't -

be divisible evenly by the number of processes taking part in the transformation.
This means that at least one processor will wait for a while until all of the other
processors are finished with their share of the computation before any
communication can take place. Therefore, for a matrix of dimension M x N,
processors 1, 2, ..., P-1, are assigned M/P rows, and the last processor, P, gets
the remaining rows. For a three-dimensional array of size M x N x O, the first P-1
processors get M/P slices, each of size N x O, and the last processor gets the
remaining slices. This method of data is referred to as row-block.

The algorithms for the two FFTs then proceed as follows. For the 2-d FFT, each
processor transforms its data by performing M/P transforms of length N. The
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global array is then block-transposed using MPI_ALLTOALLV. After a local
transpose and reordering, the data is again transformed using N/P FFTs of length
M . The array is then globally block-transposed again, using MPI_ALLTOALLYV,
and the data locally transposed and reordered, concluding the parallel 2-d FFT.
The FFTs used at each stage are the above multiple self-sorting Stockham
routines of mixed radix.

The 3-d FFT is similar, with N x M/P FFTs of length O being applied first. Then a
local transpose is performed, followed by O x M/P FFTs of length N.
MPI_ALLTOALLYV is used to perform a global block-transposition. Then a local
transpose and reordering of the data is followed by O x N/P FFTs of length M. We
conclude the FFT by invoking MPI_ALLTOALLV and following that with a final
local transpose and reordering of the data.

Double precision complex arrays are used for the sending and receiving buffers,
in order to avoid the extra latency otherwise required.

2.1 Analysis

CO6FUF has a complexity of roughly ©(MN log(MN)), while CO6FXF has a
complexity of roughly ®(MNO log(MNO)) [2]. To perform these transforms in
parallel will require 2 communication phases, but will divide the amount of
computation by P, the number of participating processes. During each
communication phase, each processor will send at most 2(M/P)(N/P) real
numbers to each of the other P-1 processors, and therefore receive that many
real numbers from each other process. This will be modeled by the processor
array performing P simultaneous scatters of N x M/P complex numbers, followed
after some computation by another P simultaneous scatters of M x N/P complex
numbers. We are assuming here that the communication network is capable of
this. This gives a complexity of about ©( (MN/P)log(MN) + log(MN/P) )= ©(
(MN/P)log(MN) ) for PCO6FUF. For PCO6FXF, we get a complexity of ©(
(MNO/P)log(MNO) ).

Using latency B and bandwidth A, the communication time for PCO6FUF is
estimated to be 2p logP + A( log(NM/P) + log(MN/P) , or roughly 2f logP + 2 A
log(MN/P). Therefore PCO6FUF is estimated to require 2 logP + 2 A log(MN/P) +
v (MN/P)log(MN) time to compute, where y is the operation time. In a similar way,
PCO6FXF should take roughly 28 log(P) + 2 A log(MNO/P) + y (MNO/P)log(MNO)
time.



3 Results

The parallelizations of the routines CO6FUF and CO6FXF, namely PCO6FUF and
PCOB6FXF, were timed on the IBM SP-1 supercomputer at the Albuquerque
Resource Center in early May, 1997. The individual nodes are RS6000 Power
chips, connected via TB-2 adapters and a highspeed Omega network [4]. The
subroutines are written in Fortran 77 and were compiled using IBM's Fortran
compiler xif 4.1 with optimization set at level 03. IBM's MPI library was used to
supply the communication subroutines and timer. To time PCO6FUF, multiple
transforms of 2-d arrays of dimension M x M, where M = 100, 200, ..., 1000, were
performed on P = 1, 2, ..., 8, processors. For PCO6FXF, multiple FFTs of size M x
Mx M, M =10, 20, ..., 100, were timedon P =1, 2, ..., 8, processors. The number
of times the routines were executed is shown in the following table.

20 30 40 50 60 70 80 90 100
1000 | 1000 | 100 50 50 50 50 20 20
100 30 25 25 25 20 20 20 20

Table 1. Number of timings averaged per routine vs size of FFT. PCO6FUF dimensions are 10 times the
numbers in the top row. PCOBFXF dimensions are the numbers in the top row.

Using [5], the latency beta is estimated to be 40 sec. for IBM's MPI_ALLTOALLY,
the bandwidth of the TB-2 adapter and high speed switch is taken to be 40
Mbits/sec., and the computational speed of the Power chip 67.2 MHz.

These parameters were used to form Figures 1. and 2. in Appendix 1, which
estimate the performance of PCO6FUF and PCO6FXF. Note that both plots show
that for small problems, the performance does not scale well with the number of
processors used, while for larger problems, we may expect nearly linear speedup.

The observed timings and the speed-up factors are presented in the following four
tables, followed by plots of the observed speedup factors.
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Table 2. CPU timings for PCOBFUF vs Number of Processors on the ARC's IBM Sp-1 with TB-2 Adapters. All
entries are in seconds.




[Dimensions 1 2 3 4 5 6 7 8
100x 100+ . - 1.00 1.15 1.46 1.85 1.97* 2.21* 2.65" 2.90*
200°% 200:. 1.00 1.59 2.19 2.70 2.29* 2.59* 2.94* 3.38*
300:x.300:" 1.00 2.10 3.22 4.24 4.78 5.46 4.59* 4.87*
[400:x 400 1.00 2.72 4.01 5.54 3.87* 5.84* 6.68" 7.28*
500:x500 - - 1.00 2.19 3.48 4.94 3.77* 4.53" 5.12* 541*
600X 600 1.00 2.37 3.61 5.06 6.33 7.77 5.87* 6.76"
00 i 1.00 2.28 1.58 4.64 3.94* 3.70* 6.16" 6.88*
|3_3’0045<”=800 1.00 2.13 4.77 5.04 3.94* 6.59" 7.65" 9.18*
900X 900 . 1.00 2.96 4.29 6.05 7.18 8.97 6.99" 7.95*
[1000.X 1000 1.00 2.77 4.25 5.76 4.55* 5.82* 7.05* 8.27*
Table 3. Observed speedups for PCOGFUF vs Number of Processors on the ARC's IBM Sp-1 with TB-2
Adaptors.
:Dimensions | i 2. 3 4 8 6 7 8 Line Type
] 0.0022 0.0031 | 0.0026 | 0.0024 | 0.0020 | 0.0023 | ----- | --—-- Solid
0.0462 0.0266 | 0.0177 | 0.0138 | 0.0116 | 0.0119 | 0.0091 | ----- Dashed
0.1594 0.0739 | 0.0555 | 0.0650 | 0.0366 | 0.0313 | 0.0314 | 0.0274 | Dot-Dashed
0.6899 0.3224 | 0.1471 | 0.1097 | 0.1473 | 0.0833 | 0.0739 [ 0.0635 | Dotted
0.9043 0.4303 | 0.3067 | 0.2460 | 0.1832 | 0.1644 [ 0.1509 | 0.1528 | Solid
i 1.67 0.8324 | 0.5760 | 0.4022 | 0.3260 | 0.2676 | 0.2645 | 0.2330 | Dashed w/Circles
70 F0#: 9 3.46 1.71 1.37 1.06 0.6989 | 0.6725 | 0.5164 | 0.4774 | Dot Dashed w/Circles
80 x80.x80:: .| 10.02 4.02 1.88 1.70 2.24 1.16 1.01 0.8344 | Dotted w/Circles
190:% 90:x90: 4] 6.61 3.48 2.27 1.78 1.38 1.01 1.06 0.8868 | Dashed w/Plusses
400X 100X 100 | 10.71 4.47 3.50 2.49 2.03 1.60 1.38 1.19 Solid w/Plusses

Table 4. CPU timings for PCOBFXF vs Number of Processors on the ARC's IBM Sp-1 with TB-2 Adapters. All
entries are in seconds.

1 2 3 4 5 6 7 8
1.00 0.71 0.85 0.92 1.10 0.96* | e | emee-
1.00 1.74 2.61 3.35 3.98 3.88” 508 | @ eme--
1.00 2.16 2.87 2.45 4.36 5.09 5.08* 5.82
1.00 2.14 4.69 6.28 4.68 8.28 9.34 10.86
: 1.00 2.10 2.95 3.68 4.94 5.50 5.99 5.92
160 X 6060 1.00 1.89 2.73 3.90 4.82 5.87 5.94 6.74
FO0X70x705  1.00 2.02 2.53 3.26 4.95 5.15 6.70 7.25
:80:x 80:x 80 1.00 2.49 5.32 5.89 4.47 8.64 9.92 12.01
‘90'x980x80: .. 1  1.00 1.90 2.91 3.7 4.79 6.55 6.24 7.45
[ 100x100x100 | 1.00 2.40 3.06 4.30 5.28 6.69 7.76 9.00

Table 5. Observed speedups for PCO6FXF vs Number of Processors at the ARC's IBM Sp-1 with TB-2

Adapters.

4 Performance Evaluation

The subroutines PCO6FUF and PCO6FXF perform better than expected, though
there are two distinct sources of problems. For the first source, a careful
examination of Tables 3 and 5 shows that there appears to be superlinear
speedup in numerous entries. This can be attributed to the fact that the serial
FFTs, CO6FUF and CO6FXF, are written for vector processing. One consequence
of this implementation is that the performance on cache based processors is not
likely to be optimal with respect to the data flow through cache. The reduced
problem size then has the effect that the data flow through cache for the

4




distributed computation is much better for the sizes tested, giving the appearance
of superlinear speedup.

For the second source, the speedup graphs, Figures 3 and 4 in Appendix A, show
dips at apparently random locations. However, in light of the branching statements
minimizing the number of short do-loops executed, some of this behavior can be
understood. Briefly, all FFTs for 1 up through 4 processors will use the loop
combination which turns out to load the data in from cache along the first index.
This is the order that Fortran arrays are stored in memory, so the loads are most
efficient and the do-loops take less time. As the number of processors increases,
the branching instructions minimizing the number of short do-loops executed
forces the computer to load the data along the second index, giving loads in non-
unit strides, degrading the performance. The asterisks in Tables 3 and 5 above
indicate those instances.

The difficulties with the degradation of performance due to the selection of do-
loop orders can be corrected with more careful branching conditions. These can
be included in the implementation of a different serial algorithm as the basic
building block of the parallel NAG FFT. Specifically, according to Norm Troullier of
IBM, the algorithm that NAG uses, decimation in frequency, or DIF, is not the best
for cache-based processing. The decimation-in-time, or DIT, algorithms perform
better on cache-based processors. This is due to the fact that the Power chip is
equipped with multiply-add floating point units for which iterated data-independent
multiply-add instructions can be pipelined, increasing the performance of code
written with this capability in mind. The DIT algorithms can be implemented using
repeated data-independent multiply-add instructions much more easily than DIF
algorithms.

Improvements can also be made in the method of data distribution, making it
possible to perform the FFTs in parallel in the event that several processors have
fewer than M/P rows of length N, for PCO6FUF, or M/P slices of dimension N x O,
for PCO6FXF. For example, the current implementation of PCO6FXF makes it
impossible to perform a 10 x 10 x 10 FFT using PCO6FXF on 7 or more
processors. The horizontal lines as entries in the timing and speedup tables
indicate such instances. The data distribution would distribute the sequences to
be transformed more evenly, giving a maximal difference of one in the number of
rows or slices on each processor, for PCO6FUF or PCO6FXF respectively.

Finally, according to [6], there are several different types of Omega network. A
better parallelization algorithm can be designed by using the specific network that
the SP-1 uses to communicate. This should give more cost optimal data
distribution and communication, further improving the parallelization.




5 Conclusion

The Fast Fourier Transform can be and is used in many calculations requiring
convolution of data and functions, numerical solution of differential equations, and
in image processing and digital signal processing. With the increase in
computational capability and in the size and difficulty of problems needing solution
comes a correspondingly greater need for more advanced and practical tools,
including parallel FFTs. Many companies are seeking to fill these needs, but have
not yet managed to satisfy them in the best way possible. This project continues a
program of study and programming which seeks to fill the need for efficient FFTs
of arbitrary length across arrays of arbitrarily many processors. This project should
be counted as an initial effort, as it indicates that there is great potential in
implementing an efficient and flexible parallel FFT. .
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